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Motivations I: random graph matching

Random Graph Matching is an extensively studied topic in recent years,
which lies in the intersection of probability, statistics and theoretical
computer science.

Goal: find a bijection between two vertex sets which maximizes the number
of common edges (i.e. minimize the adjacency disagreements)
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QAP

Given symmetric n × n matrices A and B, solve Quadratic
Assignment Problem(QAP):

max
π∈Sn

∑
i<j

Ai ,jBπ(i),π(j).

Introduced by [Koopmans-Beckmann Econometrica’57] .
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Application 1: protein-to-protein interaction

Kazemi et al. BMC Bioinformatics  (2016) 17:527 Page 6 of 16

proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

Figure: Protein-protein interaction

Graph matching for aligning protein-to-protein interaction networks
between two species, to identify conserved components and genes with
common function. [Singh-Xu-berger’08]
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Application 2: computer vision

A fundamental problem in computer vision: Detect and match similar
objects that under go different deformations

3D shapes → geometric graphs (features → nodes, distances → edges)

Shuyang Gong (PKU) Optimizing overlap of random graphs Jan. 2024 5 / 21



Key challenges

Statistical: two graphs are usually not isomorphic.

Computational: n! bijections. (100! ≈ 10158)

NP-hard in the worst case: QAP is hard to approximate within
exp(polylog(n)) mutiplicative factor.
[Makarychev-Manokaran-Sviridenko ’15]

Efficient algorithms for average-case analysis are expected.

Efforts from community on average-case of random graph matching:
[Feizi at el.’16, Lyzinski at el’16, Cullina-Kiyavash’16,17, Ding-Ma-Wu-Xu’18,

Barak-Chou-Lei-Schramm-Sheng’19, Fan-Mao-Wu-Xu’19a,19b,

Ganassali-Massoulié’20, Hall-Massoulié’20, Ding-Du’22a,22b, Ding-Du-G’22,

Ding-Li’22,23, Du-G-Huang’23, Ding-Du-Li’23...]

It is fair to say that there is still a long way to go to understand the
real networks. But it is the first step forward...
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Motivation II: random optimization problem

Random optimization problem refers to solving optimization problems
where the instance is randomly sampled.

The problems arise from various fields including computer science,
statistical physics, operations research. (e.g. finding maximal
independent set in a random graph [Rahman-Virág’17,Wein’22] / finding the
groundstate energy of Hamiltonian in spin glass models [Huang-Sellke’22]...)

Key challenge: non-convexity and high-dimensionality. (case by case
analysis)

Central Question: efficient algorithm exists? information-computation gap?

Efforts from the community on random optimization problems:
[Ding-Du-G’22, Du-G-Huang’23, Gamarnik’21,
Garmarnik-Moore-Zdeborová’22, Garmarnik-Kızılda̋g-Perkins-Xu’23,
Gamarnik-Sudan’14, Garmarnik-Zadik’19, Huang-Sellke’22, Montanari’19,
Rahman-Virág’17, Subag’21, Wein’22...]
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Mathematical model

Erdős-Rényi graph G(n, p): Each edge in Kn is preserved with probability p
independently.

Sample two independent Erdős-Rényi graphs G1(n, p) and G2(n, p).

Core quantity O(π): the number of common edges of these two graphs under π.
Formally,

O(π) :=
∑
i<j

G
(1)
i,j G

(2)
π(i),π(j) ,

where G(i) are adjacency matrices.

e.g.
π(1) = 1, π(2) = 8, π(3) = 2, π(4) = 7, π(5) = 3, π(6) = 5, π(7) = 4, π(8) = 6 ⇒
we have O(π) = 5
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Our problem

Q1: what is the typical value of maxπ∈Sn O(π) ?

A first moment computation on maxπ∈Sn O(π) yields an upper
bound, e.g. take p = n−3/4, let γ(n) := (1 + ε)2n,

P
[
max
π∈Sn

O(π) > 2(1 + ε)n

]
≤
∑
π∈Sn

P [O(π) ≥ 2(1 + ε)n]

=n!P
[
B

((
n

2

)
, p2
)

> 2(1 + ε)n

]
Chernoff
≤ n! exp

(
−2(1 + ε)n log

(
2(1 + ε)n(n
2

)
n−3/2

)
+ 2(1 + ε)n −

(
n

2

)
n−3/2

)
=n! exp(−(1 + ε+ o(1))n log n) = o(1) .

The calculation for other p is similar.
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Our problem

For other p (divide into sparse/dense by
√

log n/n),

regime maxπ∈Sn O(π)

sparse: log n
n ≪ p ≪

√
log n
n n · log n

log(log n/np2)

dense:
√

log n
n ≪ p ≤ 1

(log n)4

(n
2

)
p2 +

√
n3p2 log n

First moment computation ⇒ Upper bound w.h.p.

Right asymptotics?—True.

Q2: Find a polynomial time algorithm for argmaxπ O(π)?
(sparse: yes, dense: no)

Information-Computation gap? (sparse: no, dense: yes)
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Sparse regime

Theorem (Ding-Du-G. 22)

For p = n−α+o(1), 1/2 < α ≤ 1, there exists a polynomial-time algorithm s.t.

P
[
O(π∗) ≥ 1− ϵ

2α− 1
n

]
= 1− o(1).

Theorem (Du-G.-Huang 23)

For p = n−1/2+o(1) and p ≪
√

log n/n, for any ε > 0, there exists an O(n3)-time
algorithm such that

P
[
O(π∗) ≥ (1− ε)n log n

log (log n/np2)

]
= 1− o(1) .

n/(2α− 1) = (1 + o(1))n log n/ log
(
log n/np2

)
for p = n−α.

The constructive lower bound matches the γ(n) derived in the first moment
computation.

No information-computation gap in the sparse regime.
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Algorithm

The greedy algorithm in [Ding-Du-G’22], let α = 3/4− δ, 1
2α−1n ≈ 2n

Match the first εn vertices arbitrarily.

In step k +1, select unmatched uk in G1. Neighbor of uk in matched part Nk

Map Nk by π∗

For each such pair (sk , tk), check if there exists unmatched vk in G2

If succeed, let π∗(uk) = vk .

For other α, match a carefully designed tree in each step.

(i) (ii) (iii)
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The idea: why the algorithm works?

Consider the case α = 3/4− δ. Assume independence among the
iterative steps.

Nk ∼ B(n, p).

Conditioned on Nk . For each vk in G2, the number of edges s.t.
vk → π∗(Nk) obeys B(|Nk |, p).
By Poisson approximation,

P[B(|Nk |, p) ≥ 2] = θ((np2)2) = θ(n2p4) .

All vk fail with probability (1− n2p4)n ∼ exp(−n3p4) → 0.

It suffices to tackle the dependence.
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Key technical input: dealing with correlations

Consider the (slightly more complicated) case α = 7/8− δ, 1/(2α− 1) = 4/3.

To show
P[L ∼ Q | A1,A2] = (1 + o(1))P[L ∼ Q] .

A1 and A2 is the set of “failure” and “successful” trees.

LHS equals to

P[L ∼ Q,A1 | A2]

P[A1 | A2]
=

P̂[A1 | L ∼ Q]

P̂[A1]
P[L ∼ Q] .

Equivalently, to show the first factor is 1− o(1).

It means that if we open the edges in L ∼ Q, at least one of the “failure” trees
emerges.
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Key technical input: counting intersection patterns

The possible intersection patterns:

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure: Intersection patterns

the blue tree represents L ∼ Q, the red one is from A1.

(Union bound) count the total number of such intersections:

number of leaves× number of non-leaves = o(1) .
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Dense regime-information

Theorem (Du-G.-Huang 23, informational result)

For p in the dense regime, we have

maxπ∈Sn O(π)−
(
n
2

)
p2√

n3p2 log n

prob.→ 1 .

Second moment method: Xε :=
∑

π∈Sn
1
O(π)>(n2)p2+

√
(1−ε)n3p2 log n

.

P

[
max
π∈Sn

O(π) >

(
n

2

)
p2 +

√
(1− ε)n3p2 log n

]
≥ (EXε)

2

EX 2
ε

= exp(−o(n log n)) .

Idea: concentration of maximum.

Talagrand’s concentration inequality:

P
[∣∣∣max

π∈Sn
O(π)− Emax

π∈Sn
O(π)

∣∣∣ ≥√εn3p2 log n

]
≤ exp (−c(ε)n log n) .
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Dense regime-computation

Theorem (Du-G.-Huang 23, computational result)

There exists an O(n3)-time algorithm A which outputs a π∗ such that

P

[
O(π∗)−

(
n
2

)
p2√

n3p2 log n
≥
√
8/9− ε

]
= 1− o(1) .

Theorem (Du-G.-Huang 23, hardness result)

For p in the dense regime, for all ε > 0, there exists a constant c = c(ε) > 0 such
that for any online algorithm A,

P

[
O(A(G1,G2))−

(
n
2

)
p2√

n3p2 log n
≥
√
8/9+ ε

]
= exp(−c(ε)n log n) .

No online algorithm above
√
8/9! — Hardness result.

Main tool: Branching-OGP structure[Huang-Sellke’22].
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The Branching OGP

Define tree T with leave set L.
Construct leave-indexed correlated instances {(G(u)

1 ,G2)}u∈L.

Each ray represents an instance. G
(u)
1 and G

(v)
1 share ρ|u∧v| Bernoulli variables.

(ρ1 < ρ2 < ρ3)

Impossible for all O(πi ) above
√

8/9 + ε.

Run online algorithm on all instances. Prove by contradiction.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π14π13 π15 π16
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Open problems

How about p = θ(
√

log n/n)?

When 1/2 < α < 1, is there a polynomial-time algorithm with fixed
power that finds (near) optimal matchings?

For other graph model (with more general edge weights), determine
the maximal overlap.
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Summary

Take-home messages

In sparse regime, no information computation gap.

In dense regime, information computation gap emerges with a
threshold

√
8/9.

Related papers:
DDG22 Jian Ding, Hang Du and Shuyang Gong, A Polynomial-time Approximation Scheme for

the Maximal Overlap Between Two Independent Erdős-Rényi Graphs. To appear in
Random Structures and Algorithms.

DGH23 Hang Du, Shuyang Gong and Rundong Huang, The Algorithmic Phase Transition of
Random Graph Alignment Problem, arXiv:2307.06590.
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