
Asymptotic Diameter of Preferential Attachment Model

Shuyang Gong and Zhangsong Li

School of Mathematical Sciences, Peking University

May 29, 2025

Joint work with Hang Du (MIT) and Haodong Zhu (TU/E)

YMSC Probability Seminar

Shuyang Gong and Zhangsong Li Diameter of PAM May 2025 1 / 16



Preferential attachment model (PAM)

At each time t, a new vertex labeled t arrives and forms m edges, one at a
time, to existing nodes v ∈ [t − 1]:

P(t → v) ∝ deg(v) + δ where δ > −m .
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At each time t, a new vertex labeled t arrives and forms m edges, one at a
time, to existing nodes v ∈ [t − 1]:

P(t → v) ∝ deg(v) + δ where δ > −m .

deg(v) is updated after each edge is added

δ = ∞: uniform-attachment (no degree preference)

δ = 0: Barabási-Albert model [Barabási-Albert’99]

The smaller δ, the stronger preference for high-degree vertices

A popular dynamical model that shares many similar features as in
empirically studied real-world networks.
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Features of PAM: Power-law degree distribution

Theorem (Bollobás-Riordan-Spencer-Tusnády’01, Deijfen-van den
Esker-van der Hofstad-Hooghiemstra’09)

PAM with parameter m, δ yields power-law degree sequence with exponent
τ = 3 + δ/m > 2.

Figure: degree sequences in PAM with
m = 2, δ = 0, τ = 3, n = 106 (picture
courtesy of Remco van der Hofstad)

Figure: degree sequences in Internet
Movie Data Base 2007
[Britton-Deijfen-Lőf’2007]
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Shuyang Gong and Zhangsong Li Diameter of PAM May 2025 4 / 16



Features of PAM: Small world phenomenon

Figure: Six degrees of separation:
“Everybody on this planet is separated
only by six other people”.

Figure: Distances in social networks
Livejournal [Backstrom-Boldi-Rosa-
Ugander-Vigna’2010]

Question: Can we rigorously justify the small world phenomenon in
PAM?

Equivalently, does PAM have small diameters?
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Previous results on diameters of PAM

average degree: 2m; P(t → v) ∝ deg(v) + δ;

[Pittel’94]: the diameter of PAM with m = 1, δ > −1 is typically

(1 + o(1))2(1+δ) log n
(2+δ)θ ,

where θ ∈ (0, 1) is the solution to θ + (1 + δ)(1 + log θ) = 0.

[Bollobás-Riordan’09]: the diameter of PAM with m ≥ 2, δ = 0 is
typically (1 + o(1)) log n

log log n .

[Caravenna-Garavaglia-van der Hofstad’19]: the diameter of PAM
with m ≥ 2,−m < δ < 0 is typically

(1 + o(1))
(

4
| log(1+δ/m)| +

2
logm

)
log log n .

Remaining case: PAM with m ≥ 2, δ > 0.
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PAM with m ≥ 2, δ > 0

average degree: 2m; P(t → v) ∝ deg(v) + δ;

Difficulties for extending previous argument:

m ≥ 2 =⇒ no tree structure;
δ > 0 =⇒ no hub structure.

Difficulties in the model:

Lack of independence;
Harder to couple to the local limit.

[Dommers-van der Hofstad-Hooghiemstra’10]: the diameter of PAM
with m ≥ 2, δ > 0 is typically O(log n).
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Typical distance of PAM with m ≥ 2, δ > 0

average degree: 2m; P(t → v) ∝ deg(v) + δ; PA
(m,δ)
n : law of PAM

Theorem (van der Hofstad-Zhu’25+)

Let ν to be the exponential growth parameter of the local limit of the
preferential attachment model, then

P
G∼PA(m,δ)

n
Pu,v∼unif(V (G))

(
distG (u, v) = (1 + o(1)) logν n

)
= 1− o(1) ,

Implies that typically we have distG (u, v) = (1 + o(1)) logν n for
≥ 99% vertex pairs (thus typically diam(G ) ≥ (1 + o(1)) logν n).

Relies on first/second moment method + path counting technique.

Conjecture in [van der Hofstad-Zhu’25+]: typically the diameter of
PAM with m ≥ 2, δ > 0 is also (1 + o(1)) logν n.

Shuyang Gong and Zhangsong Li Diameter of PAM May 2025 8 / 16



Typical distance of PAM with m ≥ 2, δ > 0

average degree: 2m; P(t → v) ∝ deg(v) + δ; PA
(m,δ)
n : law of PAM

Theorem (van der Hofstad-Zhu’25+)

Let ν to be the exponential growth parameter of the local limit of the
preferential attachment model, then

P
G∼PA(m,δ)

n
Pu,v∼unif(V (G))

(
distG (u, v) = (1 + o(1)) logν n

)
= 1− o(1) ,

Implies that typically we have distG (u, v) = (1 + o(1)) logν n for
≥ 99% vertex pairs (thus typically diam(G ) ≥ (1 + o(1)) logν n).

Relies on first/second moment method + path counting technique.

Conjecture in [van der Hofstad-Zhu’25+]: typically the diameter of
PAM with m ≥ 2, δ > 0 is also (1 + o(1)) logν n.

Shuyang Gong and Zhangsong Li Diameter of PAM May 2025 8 / 16



Typical distance of PAM with m ≥ 2, δ > 0

average degree: 2m; P(t → v) ∝ deg(v) + δ; PA
(m,δ)
n : law of PAM

Theorem (van der Hofstad-Zhu’25+)

Let ν to be the exponential growth parameter of the local limit of the
preferential attachment model, then

P
G∼PA(m,δ)

n
Pu,v∼unif(V (G))

(
distG (u, v) = (1 + o(1)) logν n

)
= 1− o(1) ,

Implies that typically we have distG (u, v) = (1 + o(1)) logν n for
≥ 99% vertex pairs (thus typically diam(G ) ≥ (1 + o(1)) logν n).

Relies on first/second moment method + path counting technique.

Conjecture in [van der Hofstad-Zhu’25+]: typically the diameter of
PAM with m ≥ 2, δ > 0 is also (1 + o(1)) logν n.

Shuyang Gong and Zhangsong Li Diameter of PAM May 2025 8 / 16



Typical distance of PAM with m ≥ 2, δ > 0

average degree: 2m; P(t → v) ∝ deg(v) + δ; PA
(m,δ)
n : law of PAM

Theorem (van der Hofstad-Zhu’25+)

Let ν to be the exponential growth parameter of the local limit of the
preferential attachment model, then

P
G∼PA(m,δ)

n
Pu,v∼unif(V (G))

(
distG (u, v) = (1 + o(1)) logν n

)
= 1− o(1) ,

Implies that typically we have distG (u, v) = (1 + o(1)) logν n for
≥ 99% vertex pairs (thus typically diam(G ) ≥ (1 + o(1)) logν n).

Relies on first/second moment method + path counting technique.

Conjecture in [van der Hofstad-Zhu’25+]: typically the diameter of
PAM with m ≥ 2, δ > 0 is also (1 + o(1)) logν n.

Shuyang Gong and Zhangsong Li Diameter of PAM May 2025 8 / 16



Our result: from typical distance to diameter

average degree: 2m; P(t → v) ∝ deg(v) + δ; PA
(m,δ)
n : law of PAM

Theorem (Du-G.-L.-Zhu’25+)

Let Mn = Mn(G ) be the median of pairwise vertex distances of

G ∼ PA
(m,δ)
n .

Let Rn = Rn(G ) satisfying #{Rn-neighborhood of u} ≥ (log n)2 for
all u ∈ V (G ).

Then we have P
G∼PA(m,δ)

n
(diam(G ) ≤ Mn + O(1) · Rn) = 1− o(1).

Note that [van der Hofstad-Zhu’25+] implies that typically
Mn(G ) = (1 + o(1)) logν n.

[Du-G.-L.-Zhu’25+]: typically Rn(G ) ≤ (log n)
2
3 . (expected to be far

from tight).

Conclusion: typically diam(G ) ≤ (1 + o(1)) logν n.
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Discussions: from typical distance to diameter

It seems that our result

diam(G ) ≤ Mn(G )←average distance + O(1) · Rn(G )←depth for large neighborhood

holds for many interesting cases beyond the scope of PAM, e.g.

Random d-regular graph (d ≥ 3):

[Chung-Lu’02]: Mn = logd−1 n + O(log log n);
Rn = O(log log n);
[Bollobás-Fernandez De La Vega’81]:
diameter = logd−1 n + O(log log n).

Giant component of Erdős-Rényi graph with average degree
λ = 1 + Ω(1):

[Riordan-Wormald’08]: Mn = c(λ) log n;
Rn = Θ(1) · log n;
[Fernholz-Ramachandran’07] (see also [Ding-Kim-Lubetzky-Peres’10]
for more general λ): diameter = (1 + Θ(1)) · average distance.
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[Chung-Lu’02]: Mn = logd−1 n + O(log log n);
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Giant component of Erdős-Rényi graph with average degree
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[Riordan-Wormald’08]: Mn = c(λ) log n;
Rn = Θ(1) · log n;
[Fernholz-Ramachandran’07] (see also [Ding-Kim-Lubetzky-Peres’10]
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Proof idea

Two random sources: denote PA(·) the distribution of Gn and Pu,v the uniform
selection.

Let Mn be the upper bound of “typical” median distance: with prob. 1− o(1) over
PA on Gn

Pu,v∼UNIF(V (Gn))

[
dist(u, v) ≤ Mn |Gn

]
≥ 1/2 .

By [van der Hofstad and Zhu 25], we can take Mn = (1 + o(1)) logν n.

High level idea: ∀u, v , with probability 1− o(1/n2), there exists two vertices in
their respective Rn-neighborhoods with distance at most Mn.

u v

Rn Rn
u∗ v∗

Mn

Diameter at most Mn + 2Rn. Mn = logν n,Rn = o(log n).
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Uniform growth of neighborhood size

Lemma

Taking Rn = (log n)2/3,

PA
[
|NRn(u)| ≥ (log n)4, ∀u ∈ V (Gn)

]
= 1− o(1) .

Far from tight. Expected to be Rn = O(log log n) for
|NRn(u)| ≥ polylog(n).

m ≥ 2 condition ⇒ exponential growth in neighborhood size.

Major Challenge: dealing with dependence issue.

Lemma (Conditional attachment lemma)

Let E be a set of potential edges in Gn ∼ PA and A be a set of vertices. Assume
that A ⊂ [s, n], then

PA[u → A | E ⊂ E (Gn)] ≤
|A|(m + δ + 1) + |E |

(2s − 2)m + sδ
.
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Key ingredient: typical vertices

Typical vertices: for any u, let A(u) denote the set of vertices w
with dist(u,w) ≤ Mn. u is called typical if |A(u)| ≥ n/10.

With prob. 1− o(1), #{typical vertices} ≥ n/10. Denoted by G1.

[van der Hofstad-Zhu’25] implies

G̃1 ≜
{
Gn : Pu,v∼unif⊗2 [distGn(u, v) ≤ Mn |Gn] ≥ 1/2

}
.

holds w.p. 1− o(1).

We have G̃1 ⊂ G1. Assuming Gc
1 ,

Pu,v [distGn(u, v) ≤ Mn |Gn]

≤Pu[u is typical |Gn] + Pu,v [u is not typical, dist(u, v) ≤ Mn |Gn]

≤ 1

10
+

1

10
< 1/2.

⇒ PA(G1) = 1− o(1) under PA.
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Bridging the gap by sprinkling

Breaking [1, n] into three sets: Gn−2Kn ≜ [1, n − 2Kn], I1 ≜ [n − 2Kn, n − Kn] and
I2 ≜ [n − Kn, n] where Kn = n/ log n.

There exists a w1 in I1, such that w1 → a typical vertex and w1 → NRn (u), with

probability 1−
(
1− O((log n)4/n)

)Kn = 1− exp
(
− O((log n)3)

)
.

For any u, v ∈ [1, n − 2Kn], distGn (u, v) ≤ Mn + 2Rn + 4 with prob. 1− o(1/n2).

Gn−2Kn

u

w1

Rn

typical

I1
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Tackling the last 2Kn vertices

Show for any u ∈ [n − 2Kn, n], distGn (u, [1, n − 2Kn]) ≤ Rn + 2 .

BFS (breath-first search) in NRn (u). Fk−1 as the attachment of v1, . . . , vk−1.

Applying the conditional attachment lemma,

P
[
vk ̸→ [1, n − 2Kn] | Fk−1

]
= O

(
1

log n

)
.

P
[
NRn (u) ∩ [1, n − 2Kn] = ∅

]
≤ (1/ log n)(log n)3 = o(1/n3), by iterative

conditioning.

u

Gn−2Kn

v1
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Outlook and discussions

We prove the asymptotic diameter of the PA model is logν n when
m ≥ 2, δ > 0.

End of the story? We hope the proof technique can be applied to
other graph models.

Open question:

(1) Conditional on diameter being C logν n with C > 1, what is the graph
structure?

(2) Pinpointing the second order of the diameter of PA model. Conjecture:
logν n + O(log log n).

Thank you!
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