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Motivation Proof ideas

= A statistical technique for identifying points in a data sequence where key properties change significantly, such as mean, variance, Proof idea 1: interpolation

distribution, or correlation structure.
= Example: A time series X1, ..., X, Yot ..., Y, where a change occurs at an unknown position m.

* Intermediate measures: construct a sequence of probability measures: {P,, ,—%, 0 < k < A}, P, ,—r means changepoint occurs at
fime n — k.
= To show (by triangle inequality, the theorem follows)

1
TVGP)TL,TL—/C) Pn,n—k—l—l) — 0 (Z) .

= Goal: Detect when and where such changes occur (i.e., determine m).

= Applications: - Finance (stock price shifts, volatility changes) - Bioinformatics (structural variations in DNA sequences) - Climate
Science (shifts in temperature trends) - Quality Control (monitoring manufacturing defects)

= A convergence of real-world applications and theoretical foundations. = Data processing inequality: it suffices to show

For the changepoint detection in networks, our observation is not real-valued data, but structure of networks. The following is some
applications of changepoint detection in real-world network models.

1
TV(P,, 1,P,) =0 (K) .

— simplifying a ton of analysis......

= Cybersecurity and Fraud Detection Proof idea 2: the “easier” model

= Detecting network intrusions and abnormal traffic patterns.

= Identifying sudden shifts in transaction networks for fraud detection. * Including the movies before time M = n — N where A? < N = o(n) in P, and P,.n—1, not only the final snapshot G,,.
= Social Network Analysis = “Easier model” : probability measures on (G, Gy,): P, and P, 1.

= Monitoring evolving communities and detecting structural changes. * P, and P, ,,_; are marginals of ‘P, and P,_.

= |dentifying disinformation campaigns or viral content propagation.
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Figure 2. Observation: final snapshot of PA model (no access to arrival times)
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* Financial Networks WGy Pn—uéM)]

= Detecting market manipulation and insider trading activities. Previous results
= |dentifying systemic risks in interbank lending networks.

Final target: RHS is o(1/A).
= Similar techniqgue has also been applied in [Kaddouri-Naulet-Gassiat'24+].
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= |Bhamidi-Jin-Nobel' 18] considered the changepoint recovery problem (under Hy):
. . . . TV(P, = S V=Fp_ |L—1|< \/ 1.
3 = Suppose that the changepoint 7, > en, there exists an estimator 7,, that satisfies V(PmGM’ P”—”GM) 7DniGM‘ | — Varpn|GM [ ]
%0 = 7al = Op (logny/n) . = L has the form (Most last N vertices have C(v) = 1)
= They also established many other results, such as the power-law decay of degree distribution. C
= |[Bet-Bogerd-Castro-Hofstad' 23+] considered the detection problem Hy vs H;: L= N Z C(v)| A Xy,
= They showed that if 7, = n — A, where A,,/\/n — oo, then by counting the number of leaves, strong detection of Hy, and H; is achievable. ven|\|n—N|
4 3 T(G,) = Ni(n) — npi(9). where > ce) Aw =1 and ¢; < X, < ¢y uniformly bounded.
Figure 1. Preferential attachment model = They made the conjecture that when A,, = o(y/n), detection is impossible. = Different components are “independent”; then Var[L] _ @(%)
' 1. Al tests based on vertex degrees are powerless.

2. All tests are powerless. \

The part 2 is particularly striking because it basically says neither vertex degrees nor high-level graph structures, e.g. cycles, trees... are useful for detection.

= At time ¢, a new vertex v; comes into the play and choose a vertex in G;_; with probability proportional to the degrees in G;_;.
= The observation is the unlabeled graph. Negative results:

Why preferential attachment model? = [Kaddouri-Naulet-Gassiat'24+] showed that when A,, = o(n'/?), detection is impossible. They further prove that if the arrival times
are revealed, then A — oo is the threshold for detection.

= Degree distribution has power-law decay |Bollobas-Riordan-Spencer-Tusnady'O1]
P(k) % . Our results
= Few vertices have large degree. rich-get-richer phenomenon. In [Du-G-Xu'25+], we confirmed the conjecture by [Bet-Bogerd-Castro-Hofstad'23+] and showed that when A,, = o(y/n), detection is
= For real-world networks, 2 < v < 3. impossible. As a corollary, we demonstrated that the estimator in [Bhamidi-Jin-Nobel' 18] is order-optimal.
o Theorem (Du-G-Xu'25")
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What causes structural change in this model? How to model the preferences?

where P, is the law of G,, under Hy (no changepoint), P, . is the law of G,, under H; (changepoint at 7,)

= At each time ¢, ¢, is attachment parameter independent of the vertices in G}
The next theorem shows that the estimator in [Bhamidi-Jin-Nobel 18] is order-optimal. Proof idea 3: coupling

Theorem (Du-G'-Xu'25+)

= Given Gy constructed at ¢, a new vertex v, at time ¢t + 1

Plurs — o] o degg, (v) + 5,

" Encode the conditional laws Pg by iid Unif[0, 1] (U1, ..., Uy).

) T.vxgo_extr.eme CtisedS: o Assume that there exists € € (0, 1) such that 7,, > en. Then there is no estimator 7,, based on G, ~ Q.56 Such that |7, — 7,,| = o(y/n) holds = L isafunctionof Uy,...,Uy.
] 5Z _ godlag;?g; Ur?ifoigri]re;t,tjchargenuthl ormiy: with non-vanishing probability uniformly for all 7,, € |en, n|. L=fU,...,Uy).
= The smaller ¢;, the stronger the preference for high-degree vertices. . Use Efron-Stein to control variance
= Question: the detection problem (the arrival time is unknown, unlabeled graph): ] ]
Ho- 6 — 5. for some constant 5. Challenge of directly bounding second-moment V]jlm _ N i
Hy i 6= 6li<r, + 010 y1<icn Define the Likelihood ratio <)>» E (f(U1, o Uiy Un) = f(U 0 U UN))
L(G) 2 gl[g]. ZES _
0lG] <N x 6 <ﬁ> _ O(1/N),

Then . L . . .
where < in the last line is guaranteed by coupling, relying on the linear attachment rule.

Eo[L*(G)] = 1+ o(1) = TV(P;,Py) = o(1).

However, since only final network snapshot is observed, L(G,,) involves an average over compatible network histories, making it hard to
bound its second-moment directly.
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