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Motivation

A statistical technique for identifying points in a data sequence where key properties change significantly, such as mean, variance,

distribution, or correlation structure.

Example: A time series X1, . . . , Xm, Ym+1, . . . , Yn, where a change occurs at an unknown position m.

Goal: Detect when and where such changes occur (i.e., determine m).

Applications: - Finance (stock price shifts, volatility changes) - Bioinformatics (structural variations in DNA sequences) - Climate

Science (shifts in temperature trends) - Quality Control (monitoring manufacturing defects)

A convergence of real-world applications and theoretical foundations.

For the changepoint detection in networks, our observation is not real-valued data, but structure of networks. The following is some

applications of changepoint detection in real-world network models.

Cybersecurity and Fraud Detection
Detecting network intrusions and abnormal traffic patterns.

Identifying sudden shifts in transaction networks for fraud detection.

Social Network Analysis
Monitoring evolving communities and detecting structural changes.

Identifying disinformation campaigns or viral content propagation.

Financial Networks
Detecting market manipulation and insider trading activities.

Identifying systemic risks in interbank lending networks.

Biological and Brain Networks
Tracking changes in brain connectivity (e.g., epilepsy detection).

Identifying mutations or structural variations in genetic networks.

Transportation and Communication Networks - Monitoring traffic congestion and detecting network disruptions. - Identifying shifts

in telecommunication patterns.

Mathematical Settings

Preferential Attachment Model (PA model)

Random growing graph model, evolving with time t.
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Figure 1. Preferential attachment model

At time t, a new vertex vt comes into the play and choose a vertex in Gt−1 with probability proportional to the degrees in Gt−1.

The observation is the unlabeled graph.

Why preferential attachment model?

Degree distribution has power-law decay [Bollobás-Riordan-Spencer-Tusnády’01]

P (k) ∝ 1
kγ

.

Few vertices have large degree. rich-get-richer phenomenon.

For real-world networks, 2 < γ < 3.
e.g. Social network (Twitter, Facebook), Biological network (protein-protein network), Citation network (some papers 1000+ citation, while others only a few)

Exhibit “small world” phenomenon. [Hofstad-Zhu’25+] meaning that two “typical” vertices have small distance.
The average steps to reach from one node to another is small

1. Social network. e.g., the Erdős number, 2. Epidemiology. e.g. COVID-19.

What causes structural change in this model? How to model the preferences?

At each time t, δt is attachment parameter independent of the vertices in Gt

Given Gt constructed at t, a new vertex vt+1 at time t + 1
P [vt+1 → v] ∝ degGt

(v) + δt

Two extreme cases:
δt = ∞ ignore the degree, attach uniformly.

δt = 0 classical uniform attachment.
The smaller δt, the stronger the preference for high-degree vertices.

Question: the detection problem (the arrival time is unknown, unlabeled graph):

H0 : δt = δ, for some constant δ ,

H1 : δt = δ1t≤τn
+ δ′1τn+1≤t≤n .

Figure 2. Observation: final snapshot of PA model (no access to arrival times)

Previous results

Positive results:

[Bhamidi-Jin-Nobel’18] considered the changepoint recovery problem (under H1):
Suppose that the changepoint τn ≥ εn, there exists an estimator τ̂n that satisfies

|τ̂n − τn| = OP

(
log n

√
n
)

.

They also established many other results, such as the power-law decay of degree distribution.

[Bet-Bogerd-Castro-Hofstad’23+] considered the detection problem H0 vs H1:
They showed that if τn = n − ∆n where ∆n/

√
n → ∞, then by counting the number of leaves, strong detection of H0 and H1 is achievable.

T (Gn) = N1(n) − np1(δ).
They made the conjecture that when ∆n = o(

√
n), detection is impossible.

1. All tests based on vertex degrees are powerless.
2. All tests are powerless.
The part 2 is particularly striking because it basically says neither vertex degrees nor high-level graph structures, e.g. cycles, trees... are useful for detection.

Negative results:

[Kaddouri-Naulet-Gassiat’24+] showed that when ∆n = o(n1/3), detection is impossible. They further prove that if the arrival times
are revealed, then ∆ → ∞ is the threshold for detection.

Our results

In [Du-G’-Xu’25+], we confirmed the conjecture by [Bet-Bogerd-Castro-Hofstad’23+] and showed that when ∆n = o(
√

n), detection is
impossible. As a corollary, we demonstrated that the estimator in [Bhamidi-Jin-Nobel’18] is order-optimal.

Theorem (Du-G’-Xu’25+)

If changepoint τn satisfies ∆n = n − τn = o(
√

n), then
TV(Pn,Pn,τn

) = o(1) ,

where Pn is the law of Gn under H0 (no changepoint), Pn,τn
is the law of Gn under H1 (changepoint at τn)

The next theorem shows that the estimator in [Bhamidi-Jin-Nobel’18] is order-optimal.

Theorem (Du-G’-Xu’25+)

Assume that there exists ε ∈ (0, 1) such that τn ≥ εn. Then there is no estimator τ̂n based on Gn ∼ Qm,n,δ,δ′,τn
such that |τ̂n − τn| = o(

√
n) holds

with non-vanishing probability uniformly for all τn ∈ [εn, n].

Challenge of directly bounding second-moment

Define the Likelihood ratio

L(G) , P1[G]
P0[G]

.

Then

E0[L2(G)] = 1 + o(1) ⇒ TV(P1,P0) = o(1).

However, since only final network snapshot is observed, L(Gn) involves an average over compatible network histories, making it hard to
bound its second-moment directly.

Proof ideas

Proof idea 1: interpolation

Intermediate measures: construct a sequence of probability measures: {Pn,n−k, 0 ≤ k ≤ ∆n}, Pn,n−k means changepoint occurs at

time n − k.

To show (by triangle inequality, the theorem follows)

TV(Pn,n−k,Pn,n−k+1) = o

(
1
∆

)
.

Data processing inequality: it suffices to show

TV(Pn,n−1,Pn) = o

(
1
∆

)
.

simplifying a ton of analysis......

Proof idea 2: the “easier” model

Including the movies before time M = n − N where ∆2 � N = o(n) in Pn and Pn,n−1, not only the final snapshot Gn.

“Easier model” : probability measures on (GM , Gn): Pn and Pn−1.

Pn and Pn,n−1 are marginals of Pn and Pn−1.

TV(Pn,Pn,n−1) ≤ TV(Pn, Pn−1)
≤EGM

[
TV(Pn|GM

, Pn−1|GM
)
]

Final target: RHS is o(1/∆).
Similar technique has also been applied in [Kaddouri-Naulet-Gassiat’24+].
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Bounding the likelihood ratio

Fix GM (L = dPn−1|GM

dPn|GM

)

TV(Pn|GM
, Pn−1|GM

) = EPn|GM
|L − 1| ≤

√
VarPn|GM

[L] .

L has the form (Most last N vertices have C(v) = 1)

L = C

N

∑
v∈[n]\[n−N ]

|C(v)|λvXv ,

where
∑

w∈C(v) λw = 1 and c1 < Xv < c2 uniformly bounded.

Different components are “independent”, then Var[L] = Θ( 1
N ).
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Proof idea 3: coupling

Encode the conditional laws PGM
by iid Unif[0, 1] (U1, . . . , UN ).

L is a function of U1, . . . , UN .

L = f (U1, . . . , UN) .

Use Efron-Stein to control variance

Var[L]

≤
N∑

i=1
E

[(
f (U1, . . . , Ui, . . . , UN) − f (U1, . . . , Ũi, . . . , UN)

)2
]

≤N × Θ
(

1
N 2

)
= Θ(1/N) ,

where ≤ in the last line is guaranteed by coupling, relying on the linear attachment rule.
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